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Preface

Nuclear reactor physics is the physics of neutron fission chain reacting systems. It
encompasses those applications of nuclear physics and radiation transport and
interaction with matter that determine the behavior of nuclear reactors. As such,
it is both an applied physics discipline and the core discipline of the field of
nuclear engineering.

As a distinct applied physics discipline, nuclear reactor physics originated in the
middle of the twentieth century in the wartime convergence of international
physics efforts in the Manhattan Project. It developed vigorously for roughly the
next third of the century in various government, industrial, and university R&D
and design efforts worldwide. Nuclear reactor physics is now a relatively mature
discipline, in that the basic physical principles governing the behavior of nuclear
reactors are well understood, most of the basic nuclear data needed for nuclear
reactor analysis have been measured and evaluated, and the computational
methodology is highly developed and validated. It is now possible to accurately
predict the physics behavior of existing nuclear reactor types under normal
operating conditions. Moreover, the basic physical concepts, nuclear data, and
computational methodology needed to develop an understanding of new variants
of existing reactor types or of new reactor types exist for the most part.

As the core discipline of nuclear engineering, nuclear reactor physics is
fundamental to the major international nuclear power undertaking. As of
2000, there are 434 central station nuclear power reactors operating worldwide
to produce 350,442MWe of electrical power. This is a substantial fraction of the
world’s electrical power (e.g., more than 80% of the electricity produced in France
and more than 20% of the electricity produced in the United States). The world’s
electrical power requirements will continue to increase, particularly as the less
developed countries strive to modernize, and nuclear power is the only proven
technology for meeting these growing electricity requirements without dramati
cally increasing the already unacceptable levels of greenhouse gas emission into
the atmosphere.

Nuclear reactors have additional uses other than central station electricity
production. There are more than 100 naval propulsion reactors in the U.S. fleet
(plus others in foreign fleets). Nuclear reactors are also employed for basic
neutron physics research, for materials testing, for radiation therapy, for the
production of radioisotopes for medical, industrial, and national security



xxiv Preface

applications, and as mobile power sources for remote stations. In the future,
nuclear reactors may power deep space missions. Thus, nuclear reactor physics is
a discipline important to the present and future well-being of the world.

This book is intended as both a textbook and a comprehensive reference on
nuclear reactor physics. The basic physical principles, nuclear data, and compu
tational methodology needed to understand the physics of nuclear reactors are
developed and applied to explain the static and dynamic behavior of nuclear
reactors in Part 1. This development is at a level that should be accessible to
seniors in physics or engineering (i.e., requiring a mathematical knowledge only
through ordinary and partial differential equations and Laplace transforms and an
undergraduate-level knowledge of atomic and nuclear physics). Mastery of the
material presented in Part 1 provides an understanding of the physics of nuclear
reactors sufficient for nuclear engineering graduates at the B.S. andM.S. levels, for
most practicing nuclear engineers, and for others interested in acquiring a broad
working knowledge of nuclear reactor physics.

The material in Part 1 was developed in the process of teaching undergraduate
and first-year graduate courses in nuclear reactor physics at Georgia Tech for a
number of years. The emphasis in the presentation is on conveying the basic
physical concepts and their application to explain nuclear reactor behavior, using
the simplest mathematical description that will suffice to illustrate the physics.
Numerous examples are included to illustrate the step-by-step procedures for
carrying out the calculations discussed in the text. Problems at the end of each
chapter have been chosen to provide physical insight and to extend the material
discussed in the text, while providing practice in making calculations; they are
intended as an integral part of the textbook. Part 1 is suitable for an undergraduate
semester-length course in nuclear reactor physics; the material in Part 1 is also
suitable for a semester-length first-year graduate course, perhaps with selective
augmentation from Part 2.

The purpose of Part 2 is to augment Part 1 to provide a comprehensive,
detailed, and advanced development of the principal topics of nuclear reactor
physics. There is an emphasis in Part 2 on the theoretical bases for the advanced
computational methods of reactor physics. This material provides a comprehen
sive, though necessarily abridged, reference work on advanced nuclear reactor
physics and the theoretical bases for its computational methods. Although the
material stops short of descriptions of specific reactor physics codes, it provides
the basis for understanding the code manuals. There is more than enough
material in Part 2 for a semester-length advanced graduate course in nuclear
reactor physics. The treatment is necessarily somewhat more mathematically
intense than in Part 1.

Part 2 is intended primarily for those who are or would become specialists in
nuclear reactor physics and reactor physics computations. Mastery of this
material provides the background for creating the new physics concepts necessary
for developing new reactor types and for understanding and extending the
computational methods in existing reactor physics codes (i.e., the stock-in-trade
for the professional reactor physicist). Moreover, the extensive treatment of
neutron transport computational methods also provides an important compo
nent of the background necessary for specialists in radiation shielding, for
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specialists in the applications of neutrons and photons in medicine and industry,
and for specialists in neutron, photon, and neutral atom transport in industrial,
astrophysical, and thermonuclear plasmas.

Any book of this scope owes much to many people besides the author, and this
one is no exception. The elements of the subject of reactor physics were
developed by many talented people over the past half-century, and the references
can only begin to recognize their contributions. In this regard, I note the special
contribution of R.N. Hwang, who helped prepare certain sections on resonance
theory. The selection and organization of material has benefited from the example
of previous authors of textbooks on reactor physics. The feedback from a
generation of students has assisted in shaping the organization and presentation.
Several people (C. Nickens, B. Crumbly, S. Bennett-Boyd) supported the evolution
of the manuscript through at least three drafts, and several other people at Wiley
transformed the manuscript into a book. I am grateful to all of these people, for
without them there would be no book.

WESTON M. STACEY
Atlanta, Georgia
October 2000
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Preface to Second Edition

This second edition differs from the original in two important ways. First, a
section on neutron transport methods has been added in Chapter 3 to provide
an introduction to that subject in the first section of the book on basic reactor
physics that is intended as the text for an advanced undergraduate course. My
original intention was to use diffusion theory to introduce reactor physics,
without getting into the mathematical complexities of transport theory. I
think this works reasonably well from a pedagogical point of view, but it
has the disadvantage of sending BS graduates into the workplace without an
exposure to transport theory. So, a short section on transport methods in slab
geometry was added at the end of the diffusion theory chapter to provide an
introduction.

Second, there has been a resurgence in interest and activity in the improvement
of reactor designs and in the development of new reactor concepts that are more
inherently safe, better utilize the uranium resources, discharge less long-lived
waste and are more resistant to the diversion of fuels to other uses. A section has
been added in Chapter 7 on the improved Generation-III designs that will be
coming online over the next decade or so, and a few sections have been added in
Chapters 6 and 7 on the new reactor concepts being developed under the
Generation-IV and Advanced Fuel Cycle Initiatives with the objective of closing
the nuclear fuel cycle.

The text was amplified for the sake of explication in a few places, some
additional homework problems were included, and numerous typos, omissions
and other errors that slipped through the final proof-reading of the first edition
were corrected. I am grateful to colleagues, students and particularly the
translators preparing a Russian edition of the book for calling several such
mistakes to my attention.

Otherwise, the structure and context of the book remains unchanged. The first
eight chapters on basic reactor physics provide the text for a first course in reactor
physics at the advanced undergraduate or graduate level. The second eight
chapters on advanced reactor physics provide a text suitable for graduate courses
on neutron transport theory and reactor physics.
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I hope that this second edition will serve to introduce to the field
the new generation of scientists and engineers who will carry forward the
emerging resurgence of nuclear power to meet the growing energy needs of
mankind in a safe, economical, environmentally sustainable and proliferation-
resistant way.

WESTON M. STACEY
Atlanta, Georgia
May 2006
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Preface to Third Edition

Nuclear reactor physics is that branch of applied nuclear physics that describes
the physical behavior of nuclear reactors; as such it is the core discipline of the
field of nuclear power engineering. More specifically, nuclear reactor physics
describes the physics of the neutron chain fission reaction in a nuclear reactor,
which depends on the transport and interaction with matter of fission neutrons
and their progeny within a reactor. This physics determines the time-dependent
behavior of the neutron distribution in a nuclear reactor and its dependence on
the composition and configuration of the materials making up the reactor, which
in turn determines the time dependence of the nuclear power level and distribu
tion within the reactor and the change over time in material composition within
the reactor due to neutron interactions.

The field of nuclear reactor physics originated in the work of Enrico Fermi,
Eugene Wigner, Walter Zinn, and others who designed the Chicago Pile and the
Hanford plutonium production reactors in the WWII Manhattan Project in the
early 1940s. The early post-war development of the field took place in reactor
development programs at what became the Argonne and Oak Ridge National
Laboratories, in the naval reactor development Bettis and Knolls Atomic Power
Laboratories, and in similar reactor development laboratories abroad (USSR,
Canada, France, England, Germany, Japan). Industrial contributions to the field
began in the second half of the twentieth century at Westinghouse, General
Electric, Combustion Engineering, and Babcock & Wilcox in the United States
and subsequently other firms in Europe and Japan, and more recently in China.
(The author was privileged to have known and worked with some of the pioneers
of the field at the Knolls and Argonne Laboratories.)

This book evolved from lecture notes developed for undergraduate and
graduate courses in reactor physics and a graduate course in the related subject
of neutron transport theory developed at Georgia Tech in the 1990s. By that time
the field had advanced beyond the "bibles" of the field - ANL-5800: Reactor
Physics Constants andNaval Reactors Physics Handbook, and the great early texts
on the subject by Weinberg & Wigner, Glasstone & Edlund, Meghreblian &
Holmes, LaMarsh, Henry, and Duderstadt & Hamilton were becoming dated, and
a lot of new theory had been developed.

My intention in organizing this book was that the first eight chapters would
constitute a comprehensive first course in nuclear reactor physics at an advanced
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undergraduate level. The student would be expected to have some familiarity with
the concepts of number densities, cross sections, particle fluxes, radioactivity, and
so on going into the course and could expect to come out of the course with a
basic knowledge of nuclear reactor physics that would prepare him or her to go on
to advanced study of the subject or to take an entry-level job in the nuclear power
industry.

Chapters 9-16 are intended for people who are at least acquainted with the
material in Chapters 1-8 and want to prepare themselves for advanced nuclear
reactor analysis or the development of methods for analyzing new types of nuclear
reactors. There is enough material for a graduate course in neutron transport
theory (Chapter 9) and more than enough other material (Chapters 10-16) for a
graduate course in nuclear reactor physics, and that is the way I have taught it, but
of course other arrangements are possible.

Nuclear reactor physics is a math-intensive subject. Understanding of the
material in this book would be greatly enhanced by a familiarity with solution of
PDEs, by separation of variables and eigenfunction expansion, and by a familiarity
with Laplace and Fourier transform methods for the solution of differential
equations. This material is usually covered in an advanced undergraduate course
in engineering mathematics.

The world certainly needs nuclear power. The climatic threat of continued
reliance on fossil fuels and the questionable credibility of deployment of reliable,
large-scale baseline solar or wind power plants is authoritatively documented in
Burton Richter's Beyond Smoke and Mirrors. So, rational maintenance of our
standard of living in the developed world and its extension to the remainder of the
planet would seem to be dependent on expansion of nuclear power. Improved
versions of present reactors and many new variants of reactors are being
proposed, which means that many new reactor physics methods must be
developed in order to analyze their likely performance. A major purpose of
this book is to educate the people who will make these developments and analyze
these reactors.

The first and second editions of this book havemet with some success, and have
been translated into Russian and Chinese. The translators have been familiar with
the subject matter, which has resulted in some good questions, and of course they
have found some typos and a mistake or two. Similarly, colleagues and readers
have identified a few places where a fuller description would be useful. This third
edition benefits from their work, which I gratefully acknowledge.

Finally, no book exists without the efforts of the people who produce the physcial
product. Martin Preuss stayed after me for a number of years to prepare this third
edition, and Stephanie Volk ably edited it at Wiley-VCH. Abhishek Sarkari at
Thomson Digital led the copy editors who were essential in pulling together the
rather complex final product. I am sincerely grateful to all these people.

WESTON M. STACEY
Atlanta, Georgia
November, 2017
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1

Neutron–Nuclear Reactions

The physics of nuclear reactors is determined by the transport of neutrons and
their interaction with matter within a reactor. The basic neutron nucleus
reactions of importance in nuclear reactors and the nuclear data used in reactor
physics calculations are described in this chapter.

1.1 Neutron-Induced Nuclear Fission

Stable Nuclides

Short-range attractive nuclear forces acting among nucleons (neutrons and
protons) are stronger than the Coulomb repulsive forces acting among protons
at distances on the order of the nuclear radius (R 1.25× 10 13A1/3 cm) in a
stable nucleus. These forces are such that the ratio of the atomic mass A (the
number of neutrons plus protons) to the atomic number Z (the number of
protons) increases with Z; in other words, the stable nuclides become increasingly
neutron-rich with increasing Z, as illustrated in Fig. 1.1. The various nuclear
species are referred to as nuclides, and nuclides with the same atomic number
are referred to as isotopes of the element corresponding to Z. We use the notation
AXZ (e.g., 235U92) to identify nuclides.

Binding Energy

The actual mass of an atomic nucleus is not the sum of the masses (mp) of the Z
protons and the masses (mn) of A Z neutrons of which it is composed. The
stable nuclides have a mass defect:

Δ Zmp A Z mn
Amz (1.1)

This mass defect is conceptually thought of as having been converted to energy
(E=Δc2) at the time that the nucleus was formed, putting the nucleus into a
negative energy state. The amount of externally supplied energy that would have
to be converted to mass in disassembling a nucleus into its separate nucleons is
known as the binding energy of the nucleus, BE=Δc2. The binding energy per
nucleon (BE/A) is shown in Fig. 1.2.

Nuclear Reactor Physics, Third Edition. Weston M. Stacey.
 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Fig. 1.1 Nuclear stability curve. (With permission from Ref. [1]. Copyright 1996, McGraw-Hill.)

Fig. 1.2 Binding energy per nucleon. (With permission from Ref. [1]. Copyright 1996,
McGraw-Hill.)
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Any process that results in nuclides being converted to other nuclides with
more binding energy per nucleon will result in the conversion of mass into energy.
The combination of low A nuclides to form higher A nuclides with a higher BE/A
value is the basis for the fusion process for the release of nuclear energy. The
splitting of very high A nuclides to form intermediate-A nuclides with a higher
BE/A value is the basis of the fission process for the release of nuclear energy.

Threshold External Energy for Fission

The probability of any nuclide undergoing fission (reconfiguring its A nucleons
into two nuclides of lower A) can become quite large if a sufficient amount of
external energy is supplied to excite the nucleus. The minimum, or threshold,
amount of such excitation energy required to cause fission with high probability
depends on the nuclear structure and is quite large for nuclides with Z< 90. For
nuclides with Z> 90, the threshold energy is about 4–6MeV for even-A nuclides,
and generally is much lower for odd-A nuclides. Certain of the heavier nuclides
(e.g., 240Pu94 and 252Cf98) exhibit significant spontaneous fission even in the
absence of any externally supplied excitation energy.

Neutron-Induced Fission

When a neutron is absorbed into a heavy nucleus (A, Z) to form a compound
nucleus (A+ 1, Z), the BE/A value is lower for the compound nucleus than for the

235U92 , 239Pu94,original nucleus. For some nuclides (e.g., 233U92 , 241Pu94), this
reduction in BE/A value is sufficient that the compound nucleus will undergo
fission, with high probability, even if the neutron has very low energy. Such
nuclides are referred to as fissile; that is, they can be caused to undergo fission by
the absorption of a low-energy neutron. If the neutron had kinetic energy prior to
being absorbed into a nucleus, this energy is transformed into additional
excitation energy of the compound nucleus. All nuclides with Z> 90 will undergo
fission with high probability when a neutron with kinetic energy in excess of about
1MeV is absorbed. Nuclides such as 232Th90, 238U92 , and 240Pu94 will undergo
fission with neutrons with energy of about 1MeV or higher, with high probability.

Neutron Fission Cross Sections

The probability of a nuclear reaction, in this case fission, taking place can be
expressed in terms of a quantity σ that expresses the probable reaction rate per
unit area normal to the neutron motion for n neutrons traveling with speed v, a
distance dx in a material with N nuclides per unit volume:

reaction rate
σ (1.2)

nvNdx

The units of σ are area that gives rise to the concept of σ as a cross-sectional area
presented to the neutron by the nucleus, for a particular reaction process, and to
the designation of σ as a cross section. Cross sections are usually on the order of
10 24 cm2, and this unit is referred to as a barn, for historical reasons.
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The fission cross section, σf, is a measure of the probability that a neutron and a
nucleus interact to form a compound nucleus that then undergoes fission. The
probability that a compound nucleus will be formed is greatly enhanced if the
relative energy of the neutron and the original nucleus, plus the reduction in the
nuclear binding energy, corresponds to the difference in energy of the ground
state and an excited state of the compound nucleus, so that the energetics are just
right for formation of a compound nucleus in an excited state. The first excited
states of the compound nuclei resulting from neutron absorption by the odd-A
fissile nuclides are generally lower lying (nearer to the ground state) than the first
excited states of the compound nuclei resulting from neutron absorption by the
heavy even-A nuclides, which accounts for the odd-A nuclides havingmuch larger
absorption and fission cross sections for low-energy neutrons than do the even-A
nuclides.

Fission cross sections for some of the principal fissile nuclides of interest for
nuclear reactors are shown in Figs. 1.3–1.5. The resonance structure corresponds
to the formation of excited states of the compound nuclei, the lowest lying of
which are at less than 1 eV. The nature of the resonance cross section can be
shown to give rise to a 1/E1/2 or 1/υ dependence of the cross section at off-
resonance neutron energies below and above the resonance range, as is evident in
these figures. The fission cross sections are largest in the thermal energy region
E<∼1 eV. The thermal fission cross section for 239Pu94 is larger than that of
235U92

233U92 .or
Fission cross sections for 238U92 and 240Pu94 are shown inFigs. 1.6 and1.7. Except

for resonances, the fission cross section is insignificant below about 1MeV, above
which it is about 1 barn. The fission cross sections for these and other even-A heavy
mass nuclides are compared in Fig. 1.8, without the resonance structure.

Fig. 1.3 Fission cross sections for 233U92 . (From www.nndc.bnl.gov/.)

http://www.nndc.bnl.gov/
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Fig. 1.4 Fission cross sections for 235U92 . (From www.nndc.bnl.gov/.)

Fig. 1.5 Fission cross sections for 239Pu94. (From www.nndc.bnl.gov/.)

Products of the Fission Reaction

A wide range of nuclides are formed by the fission of heavy mass nuclides, but the
distribution of these fission fragments is sharply peaked in the mass ranges
90<A< 100 and 135<A< 145, as shown in Fig. 1.9. With reference to the

http://www.nndc.bnl.gov/
http://www.nndc.bnl.gov/



