WILEY-VCH

Weston M. Stacey

# Nuclear Reactor Physics

Third, Revised Edition



Weston M. Stacey

**Nuclear Reactor Physics** 

Weston M. Stacey

# **Nuclear Reactor Physics**

3rd, Revised Edition



#### Author

#### Prof. Weston M. Stacey

Georgia Institute of Technology Fusion Research Center / Neely Bldg. 900 Atlantic Drive, NW Atlanta, GA 30332-0425 USA All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

**Library of Congress Card No.:** applied for

**British Library Cataloguing-in-Publication Data** A catalogue record for this book is available from the British Library.

# Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <<u>http://dnb.d-nb.de</u>/>.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-41366-9 ePDF ISBN: 978-3-527-81228-8 ePub ISBN: 978-3-527-81230-1 Mobi ISBN: 978-3-527-81229-5 oBook ISBN: 978-3-527-81231-8

Cover Design Adam Design, Weinheim, Germany Typesetting Thomson Digital, Noida, India Printing and Binding

Printed on acid-free paper

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$ 

To Penny, Helen, Billy, and Lucia

#### Contents

Preface xxiii Preface to Second Edition xxvii Preface to Third Edition xxix

Part 1 Basic Reactor Physics 1

#### 1 Neutron–Nuclear Reactions 3

- 1.1 Neutron-Induced Nuclear Fission 3 Stable Nuclides 3 Binding Energy 3 Threshold External Energy for Fission 5 Neutron-Induced Fission 5 Neutron Fission Cross Sections 5 Products of the Fission Reaction 7 Energy Release 9
- 1.2 Neutron Capture 12 Radiative Capture 12 Neutron Emission 18
- 1.3 Neutron Elastic Scattering 19
- 1.4Summary of Cross Section Data23Low-Energy Cross Sections23Spectrum-Averaged Cross Sections24
- 1.5 Evaluated Nuclear Data Files 25
- Elastic Scattering Kinematics 25
  Correlation of Scattering Angle and Energy Loss 26
  Average Energy Loss 27

#### 2 Neutron Chain Fission Reactors 33

 2.1 Neutron Chain Fission Reactions 33 Capture-to-Fission Ratio 33 Number of Fission Neutrons per Neutron Absorbed in Fuel 33 Neutron Utilization 34 Fast Fission 35 Resonance Escape 36 viii Contents

| 2.2 | Criticality 37                                                   |
|-----|------------------------------------------------------------------|
|     | Effective Multiplication Constant 37                             |
|     | Effect of Fuel Lumping 37                                        |
|     | Leakage Reduction 38                                             |
| 2.3 | Time Dependence of a Neutron Fission Chain Assembly 38           |
|     | Prompt Fission Neutron Time Dependence 38                        |
|     | Source Multiplication 39                                         |
|     | Effect of Delayed Neutrons 39                                    |
| 2.4 | Classification of Nuclear Reactors 40                            |
|     | Physics Classification by Neutron Spectrum 40                    |
|     | Engineering Classification by Coolant 41                         |
| 3   | Neutron Diffusion and Transport Theory $43$                      |
| 31  | Derivation of One-Speed Diffusion Theory 43                      |
| 0.1 | Partial and Net Currents 43                                      |
|     | Diffusion Theory 46                                              |
|     | Interface Conditions 46                                          |
|     | Boundary Conditions 46                                           |
|     | Applicability of Diffusion Theory 47                             |
| 3.2 | Solutions of the Neutron Diffusion Equation in Nonmultiplying    |
| 0.2 | Media 48                                                         |
|     | Plane Isotropic Source in an Infinite Homogeneous Medium 48      |
|     | Plane Isotropic Source in a Finite Homogeneous Medium 48         |
|     | Line Source in an Infinite Homogeneous Medium 49                 |
|     | Homogeneous Cylinder of Infinite Axial Extent with Axial Line    |
|     | Source 49                                                        |
|     | Point Source in an Infinite Homogeneous Medium 49                |
|     | Point Source at the Center of a Finite Homogeneous Sphere 50     |
| 3.3 | Diffusion Kernels and Distributed Sources in a Homogeneous       |
|     | Medium 50                                                        |
|     | Infinite-Medium Diffusion Kernels 50                             |
|     | Finite-Slab Diffusion Kernel 51                                  |
|     | Finite Slab with Incident Neutron Beam 52                        |
| 3.4 | Albedo Boundary Condition 52                                     |
| 3.5 | Neutron Diffusion and Migration Lengths 53                       |
|     | Thermal Diffusion-Length Experiment 53                           |
|     | Migration Length 56                                              |
| 3.6 | Bare Homogeneous Reactor 57                                      |
|     | Slab Reactor 58                                                  |
|     | Right Circular Cylinder Reactor 59                               |
|     | Interpretation of Criticality Condition 61                       |
|     | Optimum Geometries 61                                            |
| 3.7 | Reflected Reactor 62                                             |
|     | Reflected Slab Reactor 63                                        |
|     | Reflector Savings 65                                             |
|     | Reflected Spherical, Cylindrical, and Rectangular Parallelepiped |
|     | Cores 65                                                         |
|     |                                                                  |

Contents ix

| 3.8   | Homogenization of a Heterogeneous Fuel–Moderator<br>Assembly 65                                      |
|-------|------------------------------------------------------------------------------------------------------|
|       | Spatial Self-Shielding and Thermal Disadvantage Factor 65<br>Effective Homogeneous Cross Sections 68 |
|       | Thermal Utilization 70                                                                               |
|       | Measurement of Thermal Utilization 70                                                                |
|       | Local Power Peaking Factor 71                                                                        |
| 3.9   | Control Rods 72                                                                                      |
|       | Windowshade Treatment of Control Rods 74                                                             |
| 3.10  | Numerical Solution of Diffusion Equation 76                                                          |
|       | Finite-Difference Equations in One Dimension 76                                                      |
|       | Forward Elimination/Backward Substitution Spatial Solution                                           |
|       | Procedure 78<br>Power Iteration on Fission Source 78                                                 |
|       | Finite-Difference Equations in Two Dimensions 79                                                     |
|       | Successive Relaxation Solution of Two-Dimensional Finite-Difference                                  |
|       | Equations 81                                                                                         |
|       | Power Outer Iteration on Fission Source 81                                                           |
| 3 1 1 | Nodal Approximation 82                                                                               |
| 3.12  | Transport Methods 84                                                                                 |
|       | Transmission and Absorption in a Purely Absorbing Slab Control                                       |
|       | Plate 86                                                                                             |
|       | Escape Probability in a Slab 86                                                                      |
|       | Collision Probability Method 88                                                                      |
|       | Differential Transport Formulation 89                                                                |
|       | Spherical Harmonics Methods 89                                                                       |
|       | Boundary and Interface Conditions 91                                                                 |
|       | $P_1$ Equations and Diffusion Theory 92                                                              |
|       | Discrete Ordinates Method 93                                                                         |
| 4     | Neutron Energy Distribution 101                                                                      |
| 4.1   | Analytical Solutions in an Infinite Medium 101                                                       |
|       | Fission Source Energy Range 102                                                                      |
|       | Moderation by Hydrogen Only 103                                                                      |
|       | Energy Self-Shielding 103                                                                            |
|       | Slowing Down by Nonhydrogenic Moderators with No                                                     |
|       | Absorption 104                                                                                       |
|       | Slowing-Down Density 105                                                                             |
|       | Fermi Age Neutron Slowing Down 107                                                                   |
|       | Neutron Energy Distribution in the Thermal                                                           |
|       | Range 108                                                                                            |
|       | Summary 111                                                                                          |
|       |                                                                                                      |

# **x** Contents

| 4.2 | Multigroup Calculation of Neutron Energy Distribution in an Infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Medium 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Derivation of Multigroup Equations 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Mathematical Properties of the Multigroup Equations 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Solution of Multigroup Equations 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | Preparation of Multigroup Cross-Section Sets 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.3 | Resonance Absorption 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Resonance Cross Sections 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Doppler Broadening 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Resonance Integral 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Resonance Escape Probability 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | Multigroup Resonance Cross Section 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Dractical Width 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Noutron Elux in Decompose 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Neuroux Desenance Approximation 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Wide Decemence Approximation 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | Becomence Abcomption Calculations 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | Terrene and the second se |
| 4.4 | Multiproven Diffusion Theory 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.4 | Multigroup Diffusion Theory 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Thus Charge 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Two-Group Incory 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 1 wo-Group Bare Reactor 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | One-and-One-Half-Group Theory 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Two-Group Theory of Two-Region Reactors 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | I wo-Group Theory of Reflected Reactors 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Numerical Solutions for Multigroup Diffusion Theory 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -   | Nuclear Decision Demonstra 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5   | Nuclear Reactor Dynamics 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.1 | Delayed Fission Neutrons 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Neutrons Emitted in Fission Product Decay 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Effective Delayed Neutron Parameters for Composite Mixtures 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.0 | Photoneutrons 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.2 | Point Kinetics Equations 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.3 | Period–Reactivity Relations 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.4 | Approximate Solutions of the Point Neutron Kinetics Equations 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | One-Delayed Neutron Group Approximation 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Prompt-Jump Approximation 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Reactor Shutdown 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.5 | Delayed Neutron Kernel and Zero-Power Transfer Function 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Delayed Neutron Kernel 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Zero-Power Transfer Function 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.6 | Experimental Determination of Neutron Kinetics Parameters 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Asymptotic Period Measurement 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Rod Drop Method 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Source Jerk Method 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Pulsed Neutron Methods 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Rod Oscillator Measurements 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|      | Zero-Power Transfer Function Measurements 158                                    |
|------|----------------------------------------------------------------------------------|
|      | Rossi-α Measurement 158                                                          |
| 5.7  | Reactivity Feedback 160                                                          |
|      | Temperature Coefficients of Reactivity 161                                       |
|      | Doppler Effect 162                                                               |
|      | Fuel and Moderator Expansion Effect on Resonance Escape                          |
|      | Probability 164                                                                  |
|      | Thermal Utilization 165                                                          |
|      | Nonleakage Probability 165                                                       |
|      | Representative Thermal Reactor Reactivity Coefficients 166                       |
|      | Startup Temperature Defect 167                                                   |
| 5.8  | Perturbation Theory Evaluation of Reactivity Temperature                         |
|      | Coefficients 168                                                                 |
|      | Perturbation Theory 168                                                          |
|      | Sodium Void Effect in Fast Reactors 169                                          |
|      | Doppler Effect in Fast Reactors $170$                                            |
|      | Fuel and Structure Motion in Fast Reactors 170                                   |
|      | Fuel Bowing 171                                                                  |
|      | Representative Fast Reactor Reactivity Coefficients 171                          |
| 5.9  | Reactor Stability 171                                                            |
| 0.7  | Reactor Transfer Function with Reactivity Feedback 171                           |
|      | Stability Analysis for a Simple Feedback Model 173                               |
|      | Threshold Power Level for Reactor Stability 174                                  |
|      | More General Stability Conditions 176                                            |
|      | Power Coefficients and Feedback Delay Time Constants 178                         |
| 5.10 | Measurement of Reactor Transfer Functions 179                                    |
| 0120 | Rod Oscillator Method 180                                                        |
|      | Correlation Methods 180                                                          |
|      | Reactor Noise Method 182                                                         |
| 5.11 | Reactor Transients with Feedback 184                                             |
| 0.11 | Step Reactivity Insertion $(a_{rrr} < \beta)$ : Prompt Jump 185                  |
|      | Step Reactivity Insertion $(\rho_{ex} < \beta)$ : Post-Prompt-Jump Transient 186 |
| 5.12 | Reactor Fast Excursions 187                                                      |
| 0112 | Step Reactivity Input: Feedback Proportional to Fission Energy 187               |
|      | Ramp Reactivity Input: Feedback Proportional to Fission                          |
|      | Energy 188                                                                       |
|      | Step Reactivity Input: Nonlinear Feedback Proportional to                        |
|      | Cumulative Energy Release 189                                                    |
|      | Bethe–Tait Model 190                                                             |
| 5.13 | Numerical Methods 192                                                            |
| 0.10 |                                                                                  |
| 6    | Fuel Burnup 197                                                                  |
| 6.1  | Changes in Fuel Composition 197                                                  |
| -    | Fuel Transmutation–Decay Chains 198                                              |
|      | Fuel Depletion–Transmutation–Decay Equations 199                                 |
|      | Fission Products 203                                                             |
|      | Solution of the Depletion Equations 204                                          |
|      |                                                                                  |

|      | Measure of Fuel Burnup 205                              |
|------|---------------------------------------------------------|
|      | Fuel Composition Changes with Burnup 205                |
|      | Reactivity Effects of Fuel Composition Changes 206      |
|      | Compensating for Fuel-Depletion Reactivity Effects 207  |
|      | Reactivity Penalty 208                                  |
|      | Effects of Eucl Depletion on the Power Distribution 209 |
|      | In-Core Fuel Management 210                             |
| 62   | Samarium and Yanan 211                                  |
| 0.2  | Samarium Deisening 211                                  |
|      | Samarium Poisoning 211                                  |
|      | Xenon Poisoning 213                                     |
|      | Peak Xenon 215                                          |
|      | Effect of Power-Level Changes 215                       |
| 6.3  | Fertile-to-Fissile Conversion and Breeding 217          |
|      | Availability of Neutrons 217                            |
|      | Conversion and Breeding Ratios 217                      |
| 6.4  | Simple Model of Fuel Depletion 219                      |
| 6.5  | Fuel Reprocessing and Recycling 221                     |
|      | Composition of Recycled LWR Fuel 221                    |
|      | Physics Differences of MOX Cores 222                    |
|      | Physics Considerations with Uranium Recycle 224         |
|      | Physics Considerations with Plutonium Recycle 224       |
|      | Reactor Fueling Characteristics 225                     |
| 6.6  | Radioactive Waste 225                                   |
|      | Radioactivity 225                                       |
|      | Hazard Potential 226                                    |
|      | Risk Factor 226                                         |
| 67   | Burning Surplus Weapons-Grade Uranium and Plutonium 232 |
| 0.7  | Composition of Weapons-Grade Uranium and                |
|      | Plutonium 232                                           |
|      | Physics Differences Between Weapons, and Reactor-Grade  |
|      | Plutonium Eucled Pongtorg 222                           |
| 69   | Litilization of Uranium Energy Content 224              |
| 6.0  | Transmutation of Spont Nuclear Fuel 224                 |
| 6.10 | Closing the Nuclear Fuel Cuele 242                      |
| 6.10 | Closing the Nuclear Fuel Cycle 242                      |
| 7    | Nuclear Dower Boactors 247                              |
| 71   | Draggurized Water Desitors 247                          |
| 7.1  | Pressurized water keactors 247                          |
| 7.2  | Bolling water Reactors 249                              |
| 7.3  | Pressure Tube Heavy water–Moderated Reactors 253        |
| 7.4  | Pressure Tube Graphite-Moderated Reactors 255           |
| 7.5  | Graphite-Moderated Gas-Cooled Reactors 258              |
| 7.6  | Liquid Metal Fast Reactors 260                          |
| 7.7  | Other Power Reactors 265                                |
| 7.8  | Characteristics of Power Reactors 266                   |
| 7.9  | Advanced Generation-III Reactors 267                    |
|      | Advanced Boiling Water Reactors (ABWR) 267              |
|      | Advanced Pressurized Water Reactors (APWR) 267          |
|      |                                                         |

|      | Advanced Pressure Tube Reactor 269                                |
|------|-------------------------------------------------------------------|
|      | Modular High-Temperature Gas-Cooled Reactors                      |
|      | (GT-MHR) 269                                                      |
| 7.10 | Advanced Generation-IV Reactors 271                               |
|      | Gas-Cooled Fast Reactors (GFR) 271                                |
|      | Lead-Cooled Fast Reactors (LFR) 272                               |
|      | Molten Salt Reactors (MSR) 273                                    |
|      | Supercritical Water Reactors (SCW/P) 273                          |
|      | Sodium Cooled East Deactors (SED) 273                             |
|      | Voru Ligh Temperature Desistors (VUTD) 272                        |
| 711  | A how and Coloritical Decentery 274                               |
| 7.11 | Advanced Subcritical Reactors 274                                 |
| 1.12 | Nuclear Reactor Analysis 276                                      |
|      | Construction of Homogenized Multigroup Cross Sections 2/6         |
|      | Criticality and Flux Distribution Calculations 2//                |
|      | Fuel Cycle Analyses 278                                           |
|      | Transient Analyses 279                                            |
|      | Core Operating Data 280                                           |
|      | Criticality Safety Analysis 280                                   |
| 7.13 | Interaction of Reactor Physics and Reactor Thermal Hydraulics 281 |
|      | Power Distribution 281                                            |
|      | Temperature Reactivity Effects 282                                |
|      | Coupled Reactor Physics and Thermal Hydraulics Calculations 282   |
|      |                                                                   |
| 8    | Reactor Safety 285                                                |
| 8.1  | Elements of Reactor Safety 285                                    |
|      | Radionuclides of Greatest Concern 285                             |
|      | Multiple Barriers to Radionuclide Release 285                     |
|      | Defense in Depth 287                                              |
|      | Energy Sources 287                                                |
| 8.2  | Reactor Safety Analysis 287                                       |
|      | Loss of Flow or Loss of Coolant 288                               |
|      | Loss of Heat Sink 289                                             |
|      | Reactivity Insertion 289                                          |
|      | Anticipated Transients without Scram 289                          |
| 8.3  | Quantitative Risk Assessment 289                                  |
|      | Probabilistic Risk Assessment 289                                 |
|      | Radiological Assessment 290                                       |
|      | Reactor Risks 293                                                 |
| 8.4  | Reactor Accidents 294                                             |
|      | Three Mile Island 294                                             |
|      | Chernobyl 298                                                     |
|      | Fukushima 300                                                     |
| 8.5  | Passive Safety 300                                                |
| 0.0  | Pressurized Water Reactors 300                                    |
|      | Boiling Water Reactors 301                                        |
|      | Integral Fast Reactors 301                                        |
|      | Dessive Sefety Demonstration 201                                  |
|      | I assive Salety Demonstration SUI                                 |

|     | Part 2 Advanced Reactor Physics 305                                                        |
|-----|--------------------------------------------------------------------------------------------|
| 9   | Neutron Transport Theory 307                                                               |
| 9.1 | Neutron Transport Equation 307                                                             |
|     | Boundary Conditions 309                                                                    |
|     | Scalar Flux and Current 310                                                                |
|     | Partial Currents 311                                                                       |
| 9.2 | Integral Transport Theory 312                                                              |
|     | Isotropic Point Source 313                                                                 |
|     | Isotropic Plane Source 313                                                                 |
|     | Anisotropic Plane Source 315                                                               |
|     | Transmission and Absorption Probabilities 317                                              |
|     | Escape Probability 317                                                                     |
|     | First-Collision Source for Diffusion Theory 318                                            |
|     | Inclusion of Isotropic Scattering and Fission 318                                          |
|     | Distributed Volumetric Sources in Arbitrary Geometry 320                                   |
|     | Rickley Functions 221                                                                      |
|     | Dickley Functions 521<br>Probability of Reaching a Dictance t from a Line Isotropic Source |
|     | without a Collision 322                                                                    |
| 9.3 | Collision Probability Methods 323                                                          |
| 10  | Reciprocity Among Transmission and Collision Probabilities 323                             |
|     | Collision Probabilities for Slab Geometry 324                                              |
|     | Collision Probabilities in Two-Dimensional Geometry 325                                    |
|     | Collision Probabilities for Annular Geometry 326                                           |
| 9.4 | Interface Current Methods in Slab Geometry 327                                             |
|     | Emergent Currents and Reaction Rates Due to Incident                                       |
|     | Currents 327                                                                               |
|     | Emergent Currents and Reaction Rates Due to Internal Sources 331                           |
|     | Total Reaction Rates and Emergent Currents 333                                             |
|     | Boundary Conditions 334                                                                    |
| ~ ~ | Response Matrix 335                                                                        |
| 9.5 | Multidimensional Interface Current Methods 336                                             |
|     | Extension to Multidimension 336                                                            |
|     | Evaluation of Transmission and Escape Probabilities 338                                    |
|     | Escape Probabilities in Two Dimensional Geometries 242                                     |
|     | Simple Approximations for the Escape Drobability 3/3                                       |
| 96  | Subscript Approximations for the Escape Frobability $-545$                                 |
| 2.0 | Geometries 344                                                                             |
|     | Legendre Polynomials 344                                                                   |
|     | Neutron Transport Equation in Slab Geometry 345                                            |
|     | $P_I$ Equations 346                                                                        |
|     | Boundary and Interface Conditions 347                                                      |
|     | $P_1$ Equations and Diffusion Theory 348                                                   |
|     | Simplified $P_L$ or Extended Diffusion Theory 350                                          |
|     | $P_L$ Equations in Spherical and Cylindrical Geometries 351                                |

Contents **xv** 

|      | Diffusion Equations in One-Dimensional Geometry 354                         |
|------|-----------------------------------------------------------------------------|
|      | Half-Angle Legendre Polynomials 354                                         |
|      | Double- $P_L$ Theory 355                                                    |
|      | $D-P_0$ Equations 357                                                       |
| 9.7  | Multidimensional Spherical Harmonics (P <sub>L</sub> ) Transport Theory 357 |
|      | Spherical Harmonics 357                                                     |
|      | Spherical Harmonics Transport Equations in Cartesian                        |
|      | Coordinates 359                                                             |
|      | $P_1$ Equations in Cartesian Geometry 360                                   |
|      | Diffusion Theory 361                                                        |
| 9.8  | Discrete Ordinates Methods in One-Dimensional Slab Geometry 362             |
|      | $P_L$ and D- $P_L$ Ordinates 363                                            |
|      | Spatial Differencing and Iterative Solution 366                             |
|      | Limitations on Spatial Mesh Size 367                                        |
| 9.9  | Discrete Ordinates Methods in One-Dimensional Spherical                     |
|      | Geometry 368                                                                |
|      | Representation of Angular Derivative 368                                    |
|      | Iterative Solution Procedure 369                                            |
|      | Acceleration of Convergence 371                                             |
|      | Calculation of Criticality 372                                              |
| 9.10 | Multidimensional Discrete Ordinates Methods 372                             |
|      | Ordinates and Quadrature Sets 372                                           |
|      | S <sub>N</sub> Method in Two-Dimensional x–y Geometry 375                   |
|      | Further Discussion 378                                                      |
| 9.11 | Even-Parity Transport Formulation 379                                       |
| 9.12 | Monte Carlo Methods 380                                                     |
|      | Probability Distribution Functions 380                                      |
|      | Analog Simulation of Neutron Transport 381                                  |
|      | Statistical Estimation 383                                                  |
|      | Variance Reduction 385                                                      |
|      | Tallying 387                                                                |
|      | Criticality Problems 389                                                    |
|      | Source Problems 390                                                         |
|      | Random Numbers 390                                                          |
|      |                                                                             |
| 10   | Neutron Slowing Down 395                                                    |
| 10.1 | Elastic Scattering Transfer Function 395                                    |
|      | Lethargy 395                                                                |
|      | Elastic Scattering Kinematics 395                                           |
|      | Liastic Scattering Kellier 590                                              |
|      | Linearly Anigotropic Scattering in Contor of Mass System 200                |
| 10.2 | D and P. Slowing Down Equations 400                                         |
| 10.2 | $P_1$ and $B_1$ Slowing-Down Equations 400                                  |
|      | Solution in Finite Uniform Medium 404                                       |
|      | B. Equations A05                                                            |
|      | $D_1$ Equations $\tau 00$<br>Few-Group Constants $407$                      |
|      | Tem Group Constants 707                                                     |

xvi Contents

| 10.3 | Diffusion Theory 407                                          |
|------|---------------------------------------------------------------|
|      | Lethargy-Dependent Diffusion Theory 407                       |
|      | Directional Diffusion Theory 408                              |
|      | Multigroup Diffusion Theory 409                               |
|      | Boundary and Interface Conditions 410                         |
| 10.4 | Continuous Slowing-Down Theory 411                            |
|      | $P_1$ Equations in Slowing-Down Density Formulation 411       |
|      | Slowing-Down Density in Hydrogen 415                          |
|      | Heavy Mass Scatterers 415                                     |
|      | Age Approximation 416                                         |
|      | Selengut–Goertzel Approximation 416                           |
|      | Consistent $P_1$ Approximation 416                            |
|      | Extended Age Approximation 417                                |
|      | Grueling–Goertzel Approximation 418                           |
|      | Summary of $P_l$ Continuous Slowing-Down Theory 419           |
|      | Inclusion of Anisotropic Scattering 419                       |
|      | Inclusion of Scattering Resonances 421                        |
|      | P <sub>1</sub> Continuous Slowing-Down Equations 422          |
| 10.5 | Multigroup Discrete Ordinates Transport Theory 423            |
|      |                                                               |
| 11   | Resonance Absorption 429                                      |
| 11.1 | Resonance Cross Sections 429                                  |
| 11.2 | Widely Spaced Single-Level Resonances in a Heterogeneous      |
|      | Fuel–Moderator Lattice 429                                    |
|      | Neutron Balance in Heterogeneous Fuel–Moderator Cell 429      |
|      | Reciprocity Relation 432                                      |
|      | Narrow Resonance Approximation 433                            |
|      | Wide Resonance Approximation 434                              |
|      | Evaluation of Resonance Integrals 434                         |
|      | Infinite Dilution Resonance Integral 436                      |
|      | Equivalence Relations 436                                     |
|      | Heterogeneous Resonance Escape Probability 436                |
|      | Homogenized Multigroup Resonance Cross Section 438            |
|      | Improved and Intermediate Resonance Approximations 438        |
| 11.3 | Calculation of First-Flight Escape Probabilities 439          |
|      | Escape Probability for an Isolated Fuel Rod 439               |
|      | Closely Packed Lattices 442                                   |
| 11.4 | Unresolved Resonances 444                                     |
|      | Multigroup Cross Sections for Isolated Resonances 446         |
|      | Self-Overlap Effects 447                                      |
|      | Overlap Effects for Different Sequences 448                   |
| 11.5 | Multiband Treatment of Spatially Dependent Self-Shielding 449 |
|      | Spatially Dependent Self-Shielding 449                        |
|      | Multiband Theory 450                                          |
|      | Evaluation of Multiband Parameters 453                        |
|      | Calculation of Multiband Parameters 454                       |
|      | Interface Conditions 455                                      |

| 11.6 | Resonance Cross Section Representations 456                       |
|------|-------------------------------------------------------------------|
|      | R-Matrix Representation 456                                       |
|      | Practical Formulations 457                                        |
|      | Generalization of the Pole Representation 461                     |
|      | Doppler Broadening of the Generalized Pole Representation 464     |
|      |                                                                   |
| 12   | Neutron Thermalization 469                                        |
| 12.1 | Double Differential Scattering Cross Section for Thermal          |
|      | Neutrons 469                                                      |
| 12.2 | Neutron Scattering from a Monatomic Maxwellian Gas 470            |
|      | Differential Scattering Cross Section 470                         |
|      | Cold Target Limit 471                                             |
|      | Free-Hydrogen (Proton) Gas Model 471                              |
|      | Radkowsky Model for Scattering from $H_2O$ 471                    |
|      | Heavy Gas Model 472                                               |
| 12.3 | Thermal Neutron Scattering from Bound Nuclei 473                  |
|      | Pair Distribution Functions and Scattering Functions 473          |
|      | Intermediate Scattering Functions 474                             |
|      | Incoherent Approximation 475                                      |
|      | Gaussian Representation of Scattering 475                         |
|      | Measurement of the Scattering Function 476                        |
|      | Applications to Neutron Moderating Media 476                      |
| 12.4 | Calculation of the Thermal Neutron Spectra in Homogeneous         |
|      | Media 478                                                         |
|      | Wigner–Wilkins Proton Gas Model 480                               |
|      | Heavy Gas Model 483                                               |
|      | Numerical Solution 486                                            |
|      | Moments Expansion Solution 486                                    |
|      | Multigroup Calculation 490                                        |
|      | Applications to Moderators 491                                    |
| 12.5 | Calculation of Thermal Neutron Energy Spectra in Heterogeneous    |
|      | Lattices 492                                                      |
| 12.6 | Pulsed Neutron Thermalization 494                                 |
|      | Spatial Eigenfunction Expansion 494                               |
|      | Energy Eigenfunctions of the Scattering Operator 494              |
|      | Expansion in Energy Eigenfunctions of the Scattering Operator 496 |
| 13   | Perturbation and Variational Methods 501                          |
| 13.1 | Perturbation Theory Reactivity Estimate 501                       |
|      | Multigroup Diffusion Perturbation Theory 501                      |
| 13.2 | Adjoint Operators and Importance Function 504                     |
|      | Adjoint Operators 504                                             |
|      | Importance Interpretation of the Adjoint Function 506             |
|      | Eigenvalues of the Adjoint Equation 507                           |
| 13.3 | Variational/Generalized Perturbation Reactivity Estimate 508      |
| -    | One-Speed Diffusion Theory 508                                    |
|      | Other Transport Models 511                                        |
|      | Ĩ                                                                 |

Reactivity Worth of Localized Perturbations in a Large PWR Core Model 512

- Higher Order Variational Estimates 512
- 13.4 Variational/Generalized Perturbation Theory Estimates of Reaction Rate Ratios in Critical Reactors 512
- 13.5 Variational/Generalized Perturbation Theory Estimates of Reaction Rates 515
- 13.6 Variational Theory 516 Stationarity 516 Roussopolos Variational Functional 517 Schwinger Variational Functional 517 Rayleigh Quotient 518 Construction of Variational Functionals 519
- 13.7 Variational Estimate of Intermediate Resonance Integral 519
- 13.8 Heterogeneity Reactivity Effects 521
- 13.9 Variational Derivation of Approximate Equations 522 Inclusion of Interface and Boundary Terms 523
- 13.10 Variational Even-Parity Transport Approximations 524
  Variational Principle for the Even-Parity Transport Equation 524
  Ritz Procedure 525
  Diffusion Approximation 526
  One-Dimensional Slab Transport Equation 527
- 13.11 Boundary Perturbation Theory 527

#### 14 Homogenization 535

- 14.1 Equivalent Homogenized Cross Sections 536
- 14.2 ABH Collision Probability Method 537
- 14.3 Blackness Theory 541
- 14.4 Fuel Assembly Transport Calculations 543 Pin Cells 543 Wigner–Seitz Approximation 543 Collision Probability Pin-Cell Model 544 Interface Current Formulation 548 Multigroup Pin-Cell Collision Probabilities Model 549 Resonance Cross Sections 550 Full Assembly Transport Calculation 550
- 14.5 Homogenization Theory 551 Homogenization Considerations 551 Conventional Homogenization Theory 552
- 14.6 Equivalence Homogenization Theory 553
- 14.7 Multiscale Expansion Homogenization Theory 556
- 14.8 Flux Detail Reconstruction 560

#### 15 Nodal and Synthesis Methods 563

- 15.1 General Nodal Formalism 564
- 15.2 Conventional Nodal Methods 567

Contents **xix** 

| 15.3  | Transverse Integrated Nodal Diffusion Theory Methods570Transverse Integrated Equations570Polynomial Expansion Methods571Analytical Methods576                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.4  | Heterogeneous Flux Reconstruction 577<br>Transverse Integrated Nodal Integral Transport Theory Models 577<br>Transverse Integrated Integral Transport Equations 577<br>Polynomial Expansion of Scalar Flux 581 |
|       | Isotropic Component of Transverse Leakage 581<br>Double- $P_n$ Expansion of Surface Fluxes 582<br>Angular Moments of Outgoing Surface Fluxes 583<br>Nodal Transport Equations 584                              |
| 15.5  | Transverse Integrated Nodal Discrete Ordinates Method 585                                                                                                                                                      |
| 15.6  | Finite-Element Coarse-Mesh Methods 586                                                                                                                                                                         |
|       | Variational Functional for the $P_1$ Equations 587                                                                                                                                                             |
|       | One-Dimensional Finite-Difference Approximation 588                                                                                                                                                            |
|       | Diffusion Theory Variational Functional 590                                                                                                                                                                    |
|       | Linear Finite-Element Diffusion Approximation in One                                                                                                                                                           |
|       | Dimension 591                                                                                                                                                                                                  |
|       | Approximation 502                                                                                                                                                                                              |
|       | Approximation 595<br>Multidimensional Finite-Flement Coarse-Mesh Methods 595                                                                                                                                   |
| 157   | Variational Discrete Ordinates Nodal Method 595                                                                                                                                                                |
| 10.7  | Variational Principle 596                                                                                                                                                                                      |
|       | Application of the Method 604                                                                                                                                                                                  |
| 15.8  | Variational Principle for Multigroup Diffusion Theory 605                                                                                                                                                      |
| 15.9  | Single-Channel Spatial Synthesis 608                                                                                                                                                                           |
| 15.10 | Multichannel Spatial Synthesis 614                                                                                                                                                                             |
| 15.11 | Spectral Synthesis 616                                                                                                                                                                                         |
| 16    | Space-Time Neutron Kinetics 623                                                                                                                                                                                |
| 16.1  | Flux Tilts and Delayed Neutron Holdback 623                                                                                                                                                                    |
|       | Modal Eigenfunction Expansion 624<br>Flux Tilts 625                                                                                                                                                            |
|       | Delayed Neutron Holdback 626                                                                                                                                                                                   |
| 16.2  | Spatially Dependent Point Kinetics 626                                                                                                                                                                         |
|       | Derivation of Point Kinetics Equations 628                                                                                                                                                                     |
|       | Adiabatic and Quasistatic Methods 630                                                                                                                                                                          |
|       | Variational Principle for Static Reactivity 631                                                                                                                                                                |
| 1()   | Variational Principle for Dynamic Reactivity 632                                                                                                                                                               |
| 16.3  | Fund Integration of the Spatial Neutron Flux Distribution 635                                                                                                                                                  |
|       | Explicit Integration: Forward-Difference Method 655                                                                                                                                                            |
|       | Implicit Integration: A Method 637                                                                                                                                                                             |
|       | Implicit Integration: Time-Integrated Method 640                                                                                                                                                               |
|       | Implicit Integration: GAKIN Method 642                                                                                                                                                                         |
|       | 1 0                                                                                                                                                                                                            |

**xx** Contents

|      | Alternating Direction Implicit Method 645<br>Stiffness Confinement Method 648 |
|------|-------------------------------------------------------------------------------|
|      | Symmetric Successive Overrelaxation Method 648                                |
| 164  | Generalized Runge–Kutta Methods 649                                           |
| 16.4 | Stability 651                                                                 |
|      | Classical Linear Stability Analysis 651                                       |
|      | Lyapunov's Method 653                                                         |
|      | Lyapunov's Method for Distributed Parameter Systems 655                       |
|      | Control 657                                                                   |
|      | Variational Methods of Control Theory 657                                     |
|      | Dynamic Programming 659                                                       |
|      | Variational Matheda for Spatially Dependent Control Droblema 662              |
|      | Dynamic Drogramming for Spatially Continuous Systems 665                      |
|      | Pontryagin's Maximum Principle for a Spatially Continuous                     |
|      | System 666                                                                    |
| 165  | Xenon Spatial Oscillations 667                                                |
| 10.5 | Linear Stability Analysis 669                                                 |
|      | u-Mode Approximation 671                                                      |
|      | $\lambda$ -Mode Approximation 672                                             |
|      | Nonlinear Stability Criterion 676                                             |
|      | Control of Xenon Spatial Power Oscillations 677                               |
|      | Variational Control Theory of Xenon Spatial Oscillations 677                  |
| 16.6 | Stochastic Kinetics 680                                                       |
|      | Forward Stochastic Model 680                                                  |
|      | Means, Variances, and Covariances 684                                         |
|      | Correlation Functions 685                                                     |
|      | Physical Interpretation, Applications, and Initial and Boundary               |
|      | Conditions 686                                                                |
|      | Numerical Studies 688                                                         |
|      | Startup Analysis 690                                                          |
|      |                                                                               |
|      | Annendices                                                                    |
|      | Appendices                                                                    |
| A    | Physical Constants and Nuclear Data 695                                       |
| В    | Some Useful Mathematical Formulas 703                                         |
| С    | Step Functions, Delta Functions, and Other Functions 705                      |
| C.1  | Introduction 705                                                              |
| C.2  | Properties of the Dirac $\delta$ -Function 706                                |
|      | Alternative Representations 706                                               |
|      | Properties 706                                                                |
|      | Derivatives 707                                                               |

D Some Properties of Special Functions 709

- E Introduction to Matrices and Matrix Algebra 713
- E.1 Some Definitions *713*
- E.2 Matrix Algebra 715

## F Introduction to Laplace Transforms 717

- F.1 Motivation 717
- F.2 "Cookbook" Laplace Transforms 719

Index 723

## Preface

Nuclear reactor physics is the physics of neutron fission chain reacting systems. It encompasses those applications of nuclear physics and radiation transport and interaction with matter that determine the behavior of nuclear reactors. As such, it is both an applied physics discipline and the core discipline of the field of nuclear engineering.

As a distinct applied physics discipline, nuclear reactor physics originated in the middle of the twentieth century in the wartime convergence of international physics efforts in the Manhattan Project. It developed vigorously for roughly the next third of the century in various government, industrial, and university R&D and design efforts worldwide. Nuclear reactor physics is now a relatively mature discipline, in that the basic physical principles governing the behavior of nuclear reactors are well understood, most of the basic nuclear data needed for nuclear reactor analysis have been measured and evaluated, and the computational methodology is highly developed and validated. It is now possible to accurately predict the physics behavior of existing nuclear reactor types under normal operating conditions. Moreover, the basic physical concepts, nuclear data, and computational methodology needed to develop an understanding of new variants of existing reactor types or of new reactor types exist for the most part.

As the core discipline of nuclear engineering, nuclear reactor physics is fundamental to the major international nuclear power undertaking. As of 2000, there are 434 central station nuclear power reactors operating worldwide to produce 350,442 MWe of electrical power. This is a substantial fraction of the world's electrical power (e.g., more than 80% of the electricity produced in France and more than 20% of the electricity produced in the United States). The world's electrical power requirements will continue to increase, particularly as the less developed countries strive to modernize, and nuclear power is the only proven technology for meeting these growing electricity requirements without dramatically increasing the already unacceptable levels of greenhouse gas emission into the atmosphere.

Nuclear reactors have additional uses other than central station electricity production. There are more than 100 naval propulsion reactors in the U.S. fleet (plus others in foreign fleets). Nuclear reactors are also employed for basic neutron physics research, for materials testing, for radiation therapy, for the production of radioisotopes for medical, industrial, and national security applications, and as mobile power sources for remote stations. In the future, nuclear reactors may power deep space missions. Thus, nuclear reactor physics is a discipline important to the present and future well-being of the world.

This book is intended as both a textbook and a comprehensive reference on nuclear reactor physics. The basic physical principles, nuclear data, and computational methodology needed to understand the physics of nuclear reactors are developed and applied to explain the static and dynamic behavior of nuclear reactors in Part 1. This development is at a level that should be accessible to seniors in physics or engineering (i.e., requiring a mathematical knowledge only through ordinary and partial differential equations and Laplace transforms and an undergraduate-level knowledge of atomic and nuclear physics). Mastery of the material presented in Part 1 provides an understanding of the physics of nuclear reactors sufficient for nuclear engineering graduates at the B.S. and M.S. levels, for most practicing nuclear engineers, and for others interested in acquiring a broad working knowledge of nuclear reactor physics.

The material in Part 1 was developed in the process of teaching undergraduate and first-year graduate courses in nuclear reactor physics at Georgia Tech for a number of years. The emphasis in the presentation is on conveying the basic physical concepts and their application to explain nuclear reactor behavior, using the simplest mathematical description that will suffice to illustrate the physics. Numerous examples are included to illustrate the step-by-step procedures for carrying out the calculations discussed in the text. Problems at the end of each chapter have been chosen to provide physical insight and to extend the material discussed in the text, while providing practice in making calculations; they are intended as an integral part of the textbook. Part 1 is suitable for an undergraduate semester-length course in nuclear reactor physics; the material in Part 1 is also suitable for a semester-length first-year graduate course, perhaps with selective augmentation from Part 2.

The purpose of Part 2 is to augment Part 1 to provide a comprehensive, detailed, and advanced development of the principal topics of nuclear reactor physics. There is an emphasis in Part 2 on the theoretical bases for the advanced computational methods of reactor physics. This material provides a comprehensive, though necessarily abridged, reference work on advanced nuclear reactor physics and the theoretical bases for its computational methods. Although the material stops short of descriptions of specific reactor physics codes, it provides the basis for understanding the code manuals. There is more than enough material in Part 2 for a semester-length advanced graduate course in nuclear reactor physics. The treatment is necessarily somewhat more mathematically intense than in Part 1.

Part 2 is intended primarily for those who are or would become specialists in nuclear reactor physics and reactor physics computations. Mastery of this material provides the background for creating the new physics concepts necessary for developing new reactor types and for understanding and extending the computational methods in existing reactor physics codes (i.e., the stock-in-trade for the professional reactor physicist). Moreover, the extensive treatment of neutron transport computational methods also provides an important component of the background necessary for specialists in radiation shielding, for specialists in the applications of neutrons and photons in medicine and industry, and for specialists in neutron, photon, and neutral atom transport in industrial, astrophysical, and thermonuclear plasmas.

Any book of this scope owes much to many people besides the author, and this one is no exception. The elements of the subject of reactor physics were developed by many talented people over the past half-century, and the references can only begin to recognize their contributions. In this regard, I note the special contribution of R.N. Hwang, who helped prepare certain sections on resonance theory. The selection and organization of material has benefited from the example of previous authors of textbooks on reactor physics. The feedback from a generation of students has assisted in shaping the organization and presentation. Several people (C. Nickens, B. Crumbly, S. Bennett-Boyd) supported the evolution of the manuscript through at least three drafts, and several other people at Wiley transformed the manuscript into a book. I am grateful to all of these people, for without them there would be no book.

> WESTON M. STACEY Atlanta, Georgia October 2000

## Preface to Second Edition

This second edition differs from the original in two important ways. First, a section on neutron transport methods has been added in Chapter 3 to provide an introduction to that subject in the first section of the book on basic reactor physics that is intended as the text for an advanced undergraduate course. My original intention was to use diffusion theory to introduce reactor physics, without getting into the mathematical complexities of transport theory. I think this works reasonably well from a pedagogical point of view, but it has the disadvantage of sending BS graduates into the workplace without an exposure to transport theory. So, a short section on transport methods in slab geometry was added at the end of the diffusion theory chapter to provide an introduction.

Second, there has been a resurgence in interest and activity in the improvement of reactor designs and in the development of new reactor concepts that are more inherently safe, better utilize the uranium resources, discharge less long-lived waste and are more resistant to the diversion of fuels to other uses. A section has been added in Chapter 7 on the improved Generation-III designs that will be coming online over the next decade or so, and a few sections have been added in Chapters 6 and 7 on the new reactor concepts being developed under the Generation-IV and Advanced Fuel Cycle Initiatives with the objective of closing the nuclear fuel cycle.

The text was amplified for the sake of explication in a few places, some additional homework problems were included, and numerous typos, omissions and other errors that slipped through the final proof-reading of the first edition were corrected. I am grateful to colleagues, students and particularly the translators preparing a Russian edition of the book for calling several such mistakes to my attention.

Otherwise, the structure and context of the book remains unchanged. The first eight chapters on basic reactor physics provide the text for a first course in reactor physics at the advanced undergraduate or graduate level. The second eight chapters on advanced reactor physics provide a text suitable for graduate courses on neutron transport theory and reactor physics.

## xxviii Preface to Second Edition

I hope that this second edition will serve to introduce to the field the new generation of scientists and engineers who will carry forward the emerging resurgence of nuclear power to meet the growing energy needs of mankind in a safe, economical, environmentally sustainable and proliferationresistant way.

> WESTON M. STACEY Atlanta, Georgia May 2006

### Preface to Third Edition

Nuclear reactor physics is that branch of applied nuclear physics that describes the physical behavior of nuclear reactors; as such it is the core discipline of the field of nuclear power engineering. More specifically, nuclear reactor physics describes the physics of the neutron chain fission reaction in a nuclear reactor, which depends on the transport and interaction with matter of fission neutrons and their progeny within a reactor. This physics determines the time-dependent behavior of the neutron distribution in a nuclear reactor and its dependence on the composition and configuration of the materials making up the reactor, which in turn determines the time dependence of the nuclear power level and distribution within the reactor and the change over time in material composition within the reactor due to neutron interactions.

The field of nuclear reactor physics originated in the work of Enrico Fermi, Eugene Wigner, Walter Zinn, and others who designed the Chicago Pile and the Hanford plutonium production reactors in the WWII Manhattan Project in the early 1940s. The early post-war development of the field took place in reactor development programs at what became the Argonne and Oak Ridge National Laboratories, in the naval reactor development Bettis and Knolls Atomic Power Laboratories, and in similar reactor development laboratories abroad (USSR, Canada, France, England, Germany, Japan). Industrial contributions to the field began in the second half of the twentieth century at Westinghouse, General Electric, Combustion Engineering, and Babcock & Wilcox in the United States and subsequently other firms in Europe and Japan, and more recently in China. (The author was privileged to have known and worked with some of the pioneers of the field at the Knolls and Argonne Laboratories.)

This book evolved from lecture notes developed for undergraduate and graduate courses in reactor physics and a graduate course in the related subject of neutron transport theory developed at Georgia Tech in the 1990s. By that time the field had advanced beyond the "bibles" of the field - ANL-5800: *Reactor Physics Constants* and *Naval Reactors Physics Handbook*, and the great early texts on the subject by Weinberg & Wigner, Glasstone & Edlund, Meghreblian & Holmes, LaMarsh, Henry, and Duderstadt & Hamilton were becoming dated, and a lot of new theory had been developed.

My intention in organizing this book was that the first eight chapters would constitute a comprehensive first course in nuclear reactor physics at an advanced undergraduate level. The student would be expected to have some familiarity with the concepts of number densities, cross sections, particle fluxes, radioactivity, and so on going into the course and could expect to come out of the course with a basic knowledge of nuclear reactor physics that would prepare him or her to go on to advanced study of the subject or to take an entry-level job in the nuclear power industry.

Chapters 9-16 are intended for people who are at least acquainted with the material in Chapters 1-8 and want to prepare themselves for advanced nuclear reactor analysis or the development of methods for analyzing new types of nuclear reactors. There is enough material for a graduate course in neutron transport theory (Chapter 9) and more than enough other material (Chapters 10-16) for a graduate course in nuclear reactor physics, and that is the way I have taught it, but of course other arrangements are possible.

Nuclear reactor physics is a math-intensive subject. Understanding of the material in this book would be greatly enhanced by a familiarity with solution of PDEs, by separation of variables and eigenfunction expansion, and by a familiarity with Laplace and Fourier transform methods for the solution of differential equations. This material is usually covered in an advanced undergraduate course in engineering mathematics.

The world certainly needs nuclear power. The climatic threat of continued reliance on fossil fuels and the questionable credibility of deployment of reliable, large-scale baseline solar or wind power plants is authoritatively documented in Burton Richter's *Beyond Smoke and Mirrors*. So, rational maintenance of our standard of living in the developed world and its extension to the remainder of the planet would seem to be dependent on expansion of nuclear power. Improved versions of present reactors and many new variants of reactors are being proposed, which means that many new reactor physics methods must be developed in order to analyze their likely performance. A major purpose of this book is to educate the people who will make these developments and analyze these reactors.

The first and second editions of this book have met with some success, and have been translated into Russian and Chinese. The translators have been familiar with the subject matter, which has resulted in some good questions, and of course they have found some typos and a mistake or two. Similarly, colleagues and readers have identified a few places where a fuller description would be useful. This third edition benefits from their work, which I gratefully acknowledge.

Finally, no book exists without the efforts of the people who produce the physcial product. Martin Preuss stayed after me for a number of years to prepare this third edition, and Stephanie Volk ably edited it at Wiley-VCH. Abhishek Sarkari at Thomson Digital led the copy editors who were essential in pulling together the rather complex final product. I am sincerely grateful to all these people.

WESTON M. STACEY Atlanta, Georgia November, 2017 Part 1

**Basic Reactor Physics** 

## **Neutron–Nuclear Reactions**

The physics of nuclear reactors is determined by the transport of neutrons and their interaction with matter within a reactor. The basic neutron nucleus reactions of importance in nuclear reactors and the nuclear data used in reactor physics calculations are described in this chapter.

#### 1.1 Neutron-Induced Nuclear Fission

#### **Stable Nuclides**

Short-range attractive nuclear forces acting among nucleons (neutrons and protons) are stronger than the Coulomb repulsive forces acting among protons at distances on the order of the nuclear radius  $(R = 1.25 \times 10^{-13} A^{1/3} \text{ cm})$  in a stable nucleus. These forces are such that the ratio of the atomic mass A (the number of neutrons plus protons) to the atomic number Z (the number of protons) increases with Z; in other words, the stable nuclides become increasingly *neutron-rich* with increasing Z, as illustrated in Fig. 1.1. The various nuclear species are referred to as *nuclides*, and nuclides with the same atomic number are referred to as *isotopes* of the *element* corresponding to Z. We use the notation  ${}^{A}X_{Z}$  (e.g.,  ${}^{235}U_{92}$ ) to identify nuclides.

#### **Binding Energy**

The actual mass of an atomic nucleus is not the sum of the masses  $(m_p)$  of the Z protons and the masses  $(m_n)$  of A Z neutrons of which it is composed. The stable nuclides have a mass defect:

$$\Delta \quad \begin{bmatrix} Zm_p & A & Zm_n \end{bmatrix} \quad {}^Am_z \tag{1.1}$$

This mass defect is conceptually thought of as having been converted to energy  $(E = \Delta c^2)$  at the time that the nucleus was formed, putting the nucleus into a negative energy state. The amount of externally supplied energy that would have to be converted to mass in disassembling a nucleus into its separate nucleons is known as the *binding energy* of the nucleus,  $BE = \Delta c^2$ . The binding energy per nucleon (BE/A) is shown in Fig. 1.2.



Fig. 1.1 Nuclear stability curve. (With permission from Ref. [1]. Copyright 1996, McGraw-Hill.)



Fig. 1.2 Binding energy per nucleon. (With permission from Ref. [1]. Copyright 1996, McGraw-Hill.)

Any process that results in nuclides being converted to other nuclides with more binding energy per nucleon will result in the conversion of mass into energy. The combination of low *A* nuclides to form higher *A* nuclides with a higher BE/*A* value is the basis for the *fusion* process for the release of nuclear energy. The splitting of very high *A* nuclides to form intermediate-*A* nuclides with a higher BE/*A* value is the basis of the *fission* process for the release of nuclear energy.

#### **Threshold External Energy for Fission**

The probability of any nuclide undergoing fission (reconfiguring its *A* nucleons into two nuclides of lower *A*) can become quite large if a sufficient amount of external energy is supplied to excite the nucleus. The minimum, or *threshold*, amount of such *excitation energy* required to cause fission with high probability depends on the nuclear structure and is quite large for nuclides with *Z* < 90. For nuclides with *Z* > 90, the threshold energy is about 4–6 MeV for even-*A* nuclides, and generally is much lower for odd-*A* nuclides. Certain of the heavier nuclides (e.g., <sup>240</sup>Pu<sub>94</sub> and <sup>252</sup>Cf<sub>98</sub>) exhibit significant spontaneous fission even in the absence of any externally supplied excitation energy.

#### **Neutron-Induced Fission**

When a neutron is absorbed into a heavy nucleus (A, Z) to form a *compound nucleus* (A + 1, Z), the BE/A value is lower for the compound nucleus than for the original nucleus. For some nuclides (e.g., <sup>233</sup>U<sub>92</sub>, <sup>235</sup>U<sub>92</sub>, <sup>239</sup>Pu<sub>94</sub>, <sup>241</sup>Pu<sub>94</sub>), this reduction in BE/A value is sufficient that the compound nucleus will undergo fission, with high probability, even if the neutron has very low energy. Such nuclides are referred to as *fissile*; that is, they can be caused to undergo fission by the absorption of a low-energy neutron. If the neutron had kinetic energy prior to being absorbed into a nucleus, this energy is transformed into additional excitation energy of the compound nucleus. All nuclides with Z > 90 will undergo fission with high probability when a neutron with kinetic energy in excess of about 1 MeV is absorbed. Nuclides such as <sup>232</sup>Th<sub>90</sub>, <sup>238</sup>U<sub>92</sub>, and <sup>240</sup>Pu<sub>94</sub> will undergo fission with neutrons with energy of about 1 MeV or higher, with high probability.

#### **Neutron Fission Cross Sections**

The probability of a nuclear reaction, in this case fission, taking place can be expressed in terms of a quantity  $\sigma$  that expresses the probable reaction rate per unit area normal to the neutron motion for *n* neutrons traveling with speed v, a distance *dx* in a material with *N* nuclides per unit volume:

$$\sigma \quad \frac{\text{reaction rate}}{nvNdx} \tag{1.2}$$

The units of  $\sigma$  are area that gives rise to the concept of  $\sigma$  as a cross-sectional area presented to the neutron by the nucleus, for a particular reaction process, and to the designation of  $\sigma$  as a *cross section*. Cross sections are usually on the order of 10<sup>24</sup> cm<sup>2</sup>, and this unit is referred to as a *barn*, for historical reasons.

#### 6 1 Neutron–Nuclear Reactions

The fission cross section,  $\sigma_{f}$  is a measure of the probability that a neutron and a nucleus interact to form a compound nucleus that then undergoes fission. The probability that a compound nucleus will be formed is greatly enhanced if the relative energy of the neutron and the original nucleus, plus the reduction in the nuclear binding energy, corresponds to the difference in energy of the ground state and an excited state of the compound nucleus, so that the energetics are just right for formation of a compound nucleus in an excited state. The first excited states of the compound nuclei resulting from neutron absorption by the odd-*A* fissile nuclides are generally lower lying (nearer to the ground state) than the first excited states of the compound nuclei resulting from neutron absorption by the heavy even-*A* nuclides, which accounts for the odd-*A* nuclides having much larger absorption and fission cross sections for low-energy neutrons than do the even-*A* nuclides.

Fission cross sections for some of the principal fissile nuclides of interest for nuclear reactors are shown in Figs. 1.3–1.5. The resonance structure corresponds to the formation of excited states of the compound nuclei, the lowest lying of which are at less than 1 eV. The nature of the resonance cross section can be shown to give rise to a  $1/E^{1/2}$  or 1/v dependence of the cross section at off-resonance neutron energies below and above the resonance range, as is evident in these figures. The fission cross sections are largest in the thermal energy region  $E < \sim 1 \text{ eV}$ . The thermal fission cross section for  $^{239}\text{Pu}_{94}$  is larger than that of  $^{235}\text{U}_{92}$  or  $^{233}\text{U}_{92}$ .

Fission cross sections for  $^{238}U_{92}$  and  $^{240}Pu_{94}$  are shown in Figs. 1.6 and 1.7. Except for resonances, the fission cross section is insignificant below about 1 MeV, above which it is about 1 barn. The fission cross sections for these and other even-*A* heavy mass nuclides are compared in Fig. 1.8, without the resonance structure.



Fig. 1.3 Fission cross sections for <sup>233</sup>U<sub>92</sub>. (From www.nndc.bnl.gov/.)



Fig. 1.4 Fission cross sections for <sup>235</sup>U<sub>92</sub>. (From www.nndc.bnl.gov/.)



Fig. 1.5 Fission cross sections for <sup>239</sup>Pu<sub>94</sub>. (From www.nndc.bnl.gov/.)

#### **Products of the Fission Reaction**

A wide range of nuclides are formed by the fission of heavy mass nuclides, but the distribution of these fission fragments is sharply peaked in the mass ranges 90 < A < 100 and 135 < A < 145, as shown in Fig. 1.9. With reference to the